Semantic Theory

Lecture 3: Type Theory 1

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Limitations of first-order logic (1)

First-order logic talks about

= Individual objects
m Properties of and relations between individual objects
m Generalization across individual objects (quantification)

m FOL is not expressive enough to capture the full range of
meaning information that can be expressed by basic natural-
language expressions; examples:

m Bill is a poor piano player (predicate modifiers)
m Blond is a hair color (second-order predicates)

m Yesterday, it rained (non-logical sentence operators)

Limitations of first-order logic (2)

m FOL cannot represent higher-order quantification, as in the
following NL sentences, which express quantification over first-

order predicates:
m Bill and John have the same hair color

m T0 model these phenomena, we need higher order extensions of
FOL. The maximally general higher order extension of logic is

Type Theory.

Types

m Basic types:
m e - the type of individual terms (“entities”)
m t-the type of formulas (“truth-values”)

m Complex types:
m If 0, T are types, then (o, T) Is a type.

m An expression of type (o, T) is a functor expression that takes
a o0 type expression as argument and forms a type T
expression together with it.

Examples

Types of first-order expressions:

m Individual constants (John, Saarbricken) : e
= One-place predicates (sleep, walk): (e, t)
m Two-place predicates (read, admire): (e, (e, t))

m Three-place predicates (give, introduce): (e, (e, (e, t)))

m Higher-order types:
m Predicate modifiers (expensive, poor): {({e, t), (e, t))
m Second-order predicates (hair colour): ({e, t), t)
m Sentence operators (yesterday, possibly, unfortunately): (t, t)
m Degree particles (very, too): {{{e, t), (e, t)), {{e, t), (e, t)))

m Hint: If o, T are basic types, (o, T) can be abbreviated as oT. Thus, the
type of predicate modifiers and second-order predicates can be more
conveniently written as (et, et) and (et, t) respectively.

Type Theory — Vocabulary

Non-logical constants: For every type T a (possibly
empty) set of non-logical constants CON< (pairwise disjoint)

m Variables: For every type T an infinite set of
variables VAR- (pairwise disjoint)

m Logical symbols: V, 3, =, A, V, -, -, =

m Brackets: (,)

Type Theory - Syntax

m The sets of well-formed expressions WE-~ for every type
T are given by:

(i) CON{ € WErand VAR: € WE-, for every type T
(i) If ais in WE(q, 1), B in WEg, then a(B) € WE-.

(iii) If @, g are in WE¢, then —o, (pAy), (pvy), (p—y), (p~y) are in
WE:.

(iv) If @ is in WEtand v is a variable of arbitrary type, then Vv¢
and dve are in WEt.

(v) If a, B are well-formed expressions of the same type,
then a = B € WE:.

Type Theory — Function Application

m The sets of well-formed expressions WE-~ for every type
T are given by:

(i) CON-: € WE:and VAR: € WE-, for every type T
(i) If ais in WE(g, v), B in WEg, then a(B) € WE-.

(iii) If @, g are in WE¢, then —o, (pAy), (pvy), (p—y), (p~y) are in
WE:.

(iv) If @ is in WEtand v is a variable of arbitrary type, then Vv¢
and dve are in WEt.

(v) If a, B are well-formed expressions of the same type,
then a = B € WE:.

Function Application

m The most important syntactic operation in type-theory is
function application:
If a € WE_, .., p € WE,, then a(p) € WE, .

m Note: A functor of complex type combines with an appropriate
argument to a more complex expression of less complex

type.

m The syntactic composition of complex type-theoretic expressions
Is unsually represented as a “type inference schema”:

Bill drives fast drive: et fast: (et, et)

bill: e fast(drive): et
fast(drive)(bill): t

“Inverse” Type Inference

m John believes that Bill likes Mary

like: (e, (e,t)) mary: e
bill: e like (mary): (e,t)
believe: ? like (mary)(bill): t
john: e believe(like (mary)(bill)): ?

believe(like (mary)(bill))(john): t

m believe must be a functor {o, T), because its sister term is basic; more
specifically, the type of “like(mary)(bill)“ is t, so believe must be (t, T).

m Tis theresult type, i.e., the type of “believe(like (mary)(bill))“; the
expression takesanetoformat, so T is (e,t).

m believe must have type (t, (e,t))

10

Type Theory — Higher-Order Quantification

m The sets of well-formed expressions WE-~ for every type
T are given by:

(i) CON-: € WE:and VAR: € WE-, for every type T
(ii) If ais in WEg,), B in WEg, then a(B) € WE-.

(iii) If @, g are in WE¢, then —o, (pAy), (pvy), (p—y), (p~y) are in
WE:.

(iv) If ¢ isin WEtand v is a variable of arbitrary type, then Vvg
and dve are in WE:.

(v) If a, B are well-formed expressions of the same type,
then a = B € WE:.

11

Higher-Order Quantification, Examples

m Bill has the same hair colour as John.
3G (hair_colour(G) a G (bill) A G (john))
m Construction using the type inference schema:

bil: e G:(e,t) john:e G:{e,t)

hair colour: {{e,t),t) G:({(e,t) G(bill): t G(john): t

hair_colour(G): t G(bill) A G(john): t

hair_colour(@) A G (bill) A G (john): t

4G (hair_colour(G) A G (bill) A G (john)): t

12

Type Theory — Higher-Order Equality

m The sets of well-formed expressions WE-~ for every type
T are given by:

(i) CON-: € WE:and VAR: € WE-, for every type T
(ii) If ais in WEg,), B in WEg, then a(B) € WE-.

(iii) If @, g are in WE¢, then —o, (pAy), (pvy), (p—y), (p~y) are in
WE:.

(iv) If @ is in WEtand v is a variable of arbitrary type, then Vv¢
and dve are in WEt.

(v) If a, B are well-formed expressions of the same type,
then a = B € WE:.

13

Higher-Order Equality

m Type-theoretic equality is an operator with very strong expressive

power. It can express equivalence between representations of any
type. Examples:

m Forp, g€ CONg “p=q” expresses material equivalence:“p -~ q”.

m ForF, G € CON, v, “F=G" expresses co-extensionality:
“VX(Fx—Gx)”

m For any formula @, ¢=(x=x) is a representation of “¢ is true”.

14

