
Semantic Theory
Lecture 3: Type Theory 1

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

2

Limitations of first-order logic (1)
■  First-order logic talks about

■  Individual objects
■  Properties of and relations between individual objects
■  Generalization across individual objects (quantification)

■  FOL is not expressive enough to capture the full range of
meaning information that can be expressed by basic natural-
language expressions; examples:
■  Bill is a poor piano player (predicate modifiers)
■  Blond is a hair color (second-order predicates)
■  Yesterday, it rained (non-logical sentence operators)

3

Limitations of first-order logic (2)
■  FOL cannot represent higher-order quantification, as in the

following NL sentences, which express quantification over first-
order predicates:
■  Bill and John have the same hair color

■  To model these phenomena, we need higher order extensions of
FOL. The maximally general higher order extension of logic is
Type Theory.

4

■  Basic types:
■  e – the type of individual terms (“entities”)
■  t – the type of formulas (“truth-values”)

■  Complex types:
■  If σ, τ are types, then ⟨σ, τ⟩ is a type.
■  An expression of type ⟨σ, τ⟩ is a functor expression that takes

a σ type expression as argument and forms a type τ
expression together with it.

Types

5

Examples
■  Types of first-order expressions:

■  Individual constants (John, Saarbrücken) : e
■  One-place predicates (sleep, walk): ⟨e, t⟩
■  Two-place predicates (read, admire): ⟨e, ⟨e, t⟩⟩
■  Three-place predicates (give, introduce): ⟨e, ⟨e, ⟨e, t⟩⟩⟩

■  Higher-order types:
■  Predicate modifiers (expensive, poor): ⟨⟨e, t⟩, ⟨e, t⟩⟩
■  Second-order predicates (hair colour): ⟨⟨e, t⟩, t⟩
■  Sentence operators (yesterday, possibly, unfortunately): ⟨t, t⟩
■  Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩

■  Hint: If σ, τ are basic types, ⟨σ, τ⟩ can be abbreviated as στ. Thus, the
type of predicate modifiers and second-order predicates can be more
conveniently written as ⟨et, et⟩ and ⟨et, t⟩ respectively.

6

■  Non-logical constants: For every type τ a (possibly
empty) set of non-logical constants CONτ (pairwise disjoint)

■  Variables: For every type τ an infinite set of
variables VARτ (pairwise disjoint)

■  Logical symbols: ∀, ∃, ¬, ∧, ∨, →, ↔, =

■  Brackets: (,)

Type Theory – Vocabulary

7

■  The sets of well-formed expressions WEτ for every type
τ are given by:
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ.
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in

WEt.
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ

and ∃vφ are in WEt.
(v)  If α, β are well-formed expressions of the same type,

then α = β ∈ WEt.

Type Theory – Syntax

8

■  The sets of well-formed expressions WEτ for every type
τ are given by:
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ.
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in

WEt.
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ

and ∃vφ are in WEt.
(v)  If α, β are well-formed expressions of the same type,

then α = β ∈ WEt.

Type Theory – Function Application

Function Application
■  The most important syntactic operation in type-theory is

function application:
 If α ∈ WE<σ, τ>, β ∈ WEσ , then α(β) ∈ WEτ .

■  Note: A functor of complex type combines with an appropriate
argument to a more complex expression of less complex
type.

■  The syntactic composition of complex type-theoretic expressions
is unsually represented as a “type inference schema”:

 Bill drives fast drive: et fast: ⟨et, et⟩

 bill: e fast(drive): et
 fast(drive)(bill): t

9

“Inverse” Type Inference

■  John believes that Bill likes Mary

 like: ⟨e, ⟨e,t⟩⟩ mary: e

 bill: e like (mary): ⟨e,t⟩
believe: ? like (mary)(bill): t

john: e believe(like (mary)(bill)): ?

 believe(like (mary)(bill))(john): t

■  believe must be a functor ⟨σ, τ⟩, because its sister term is basic; more
specifically, the type of “like(mary)(bill)“ is t, so believe must be ⟨t, τ⟩.

■  τ is the result type, i.e., the type of “believe(like (mary)(bill))“; the
expression takes an e to form a t, so τ is ⟨e,t⟩.

■  believe must have type ⟨t, ⟨e,t⟩⟩
10

11

■  The sets of well-formed expressions WEτ for every type
τ are given by:
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ.
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in

WEt.
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ

and ∃vφ are in WEt.
(v)  If α, β are well-formed expressions of the same type,

then α = β ∈ WEt.

Type Theory – Higher-Order Quantification

12

■  Bill has the same hair colour as John.

 ∃G (hair_colour(G) ∧ G (bill) ∧ G (john))

■  Construction using the type inference schema:

 bill: e G: ⟨e,t⟩ john: e G: ⟨e,t⟩

 hair colour: ⟨⟨e,t⟩,t⟩ G: ⟨e,t⟩ G(bill): t G(john): t

 hair_colour(G): t G(bill) ∧ G(john): t

 hair_colour(G) ∧ G (bill) ∧ G (john): t

 ∃G (hair_colour(G) ∧ G (bill) ∧ G (john)): t

Higher-Order Quantification, Examples

13

■  The sets of well-formed expressions WEτ for every type
τ are given by:
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ.
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in

WEt.
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ

and ∃vφ are in WEt.
(v)  If α, β are well-formed expressions of the same type,

then α = β ∈ WEt.

Type Theory – Higher-Order Equality

Higher-Order Equality
■  Type-theoretic equality is an operator with very strong expressive

power. It can express equivalence between representations of any
type. Examples:

■  For p, q ∈ CONt, “p=q” expresses material equivalence:“p ↔ q”.

■  For F, G ∈ CON⟨e, t⟩, “F=G” expresses co-extensionality:
“∀x(Fx↔Gx)”

■  For any formula φ, φ=(x=x) is a representation of “φ is true”.

14

