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Limitations of first-order logic (1) 
■  First-order logic talks about 

■  Individual objects 
■  Properties of and relations between individual objects 
■  Generalization across individual objects (quantification) 

■  FOL is not expressive enough to capture the full range of 
meaning information that can be expressed by basic natural-
language expressions; examples: 
■  Bill is a poor piano player (predicate modifiers) 
■  Blond is a hair color (second-order predicates) 
■  Yesterday, it rained (non-logical sentence operators) 
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Limitations of first-order logic (2) 
■  FOL cannot represent higher-order quantification, as in the 

following NL sentences, which express quantification over first-
order predicates: 
■  Bill and John have the same hair color 

■  To model these phenomena, we need higher order extensions of 
FOL. The maximally general higher order extension of logic is 
Type Theory.  
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■  Basic types: 
■  e – the type of individual terms (“entities”) 
■  t – the type of formulas (“truth-values”) 

■  Complex types: 
■  If σ, τ are types, then ⟨σ, τ⟩ is a type. 
■  An expression of type ⟨σ, τ⟩ is a functor expression that takes 

a σ type expression as argument and forms a type τ 
expression together with it. 

Types 
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Examples 
■  Types of first-order expressions: 

■  Individual constants (John, Saarbrücken) : e 
■  One-place predicates (sleep, walk): ⟨e, t⟩ 
■  Two-place predicates (read, admire): ⟨e, ⟨e, t⟩⟩ 
■  Three-place predicates (give, introduce): ⟨e, ⟨e, ⟨e, t⟩⟩⟩ 

■  Higher-order types: 
■  Predicate modifiers (expensive, poor): ⟨⟨e, t⟩, ⟨e, t⟩⟩ 
■  Second-order predicates (hair colour): ⟨⟨e, t⟩, t⟩ 
■  Sentence operators (yesterday, possibly, unfortunately): ⟨t, t⟩ 
■  Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩ 

■  Hint: If σ, τ are basic types, ⟨σ, τ⟩ can be abbreviated as στ. Thus, the 
type of predicate modifiers and second-order predicates can be more 
conveniently written as ⟨et, et⟩ and ⟨et, t⟩ respectively. 
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■  Non-logical constants: For every type τ a (possibly 
empty) set of non-logical constants CONτ (pairwise disjoint) 

■  Variables: For every type τ an infinite set of 
variables VARτ (pairwise disjoint) 

■  Logical symbols: ∀, ∃, ¬, ∧, ∨, →, ↔, = 

■  Brackets: (, ) 

Type Theory – Vocabulary 



7 

■  The sets of well-formed expressions WEτ for every type 
τ are given by: 
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ 
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ. 
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in 

WEt.   
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ 

and ∃vφ are in WEt. 
(v)  If α, β are well-formed expressions of the same type,  

then α = β ∈ WEt. 

Type Theory – Syntax 
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■  The sets of well-formed expressions WEτ for every type 
τ are given by: 
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ 
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ. 
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in 

WEt.   
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ 

and ∃vφ are in WEt. 
(v)  If α, β are well-formed expressions of the same type,  

then α = β ∈ WEt. 

Type Theory – Function Application 



Function Application 
■  The most important syntactic operation in type-theory is 

function application: 
  If α ∈ WE<σ, τ>, β ∈ WEσ , then α(β) ∈ WEτ . 

■  Note: A functor of complex type combines with an appropriate 
argument to a more complex expression of less complex 
type. 

■  The syntactic composition of complex type-theoretic expressions 
is unsually represented as a “type inference schema”: 

 Bill drives fast   drive:  et  fast: ⟨et, et⟩  

    bill: e    fast(drive): et 
    fast(drive)(bill): t 
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“Inverse” Type Inference 

■  John believes that Bill likes Mary  

     like: ⟨e, ⟨e,t⟩⟩       mary: e 

    bill: e    like (mary): ⟨e,t⟩ 
believe: ?    like (mary)(bill): t 

john: e   believe(like (mary)(bill)): ? 

   believe(like (mary)(bill))(john): t 

■  believe must be a functor ⟨σ, τ⟩, because its sister term is basic; more 
specifically, the type of “like(mary)(bill)“ is t, so believe must be ⟨t, τ⟩. 

■  τ is the result type, i.e., the type of “believe(like (mary)(bill))“;  the 
expression takes an e to form a t, so τ is ⟨e,t⟩. 

■  believe must have type ⟨t, ⟨e,t⟩⟩ 
10 
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■  The sets of well-formed expressions WEτ for every type 
τ are given by: 
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ 
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ. 
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in 

WEt.   
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ 

and ∃vφ are in WEt. 
(v)  If α, β are well-formed expressions of the same type,  

then α = β ∈ WEt. 

Type Theory – Higher-Order Quantification 
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■  Bill has the same hair colour as John.   

  ∃G (hair_colour(G) ∧ G (bill) ∧ G (john)) 

■  Construction using the type inference schema: 

           bill: e    G: ⟨e,t⟩     john: e    G: ⟨e,t⟩ 

 hair colour: ⟨⟨e,t⟩,t⟩     G: ⟨e,t⟩      G(bill): t            G(john): t 

  hair_colour(G): t                     G(bill) ∧ G(john): t 

          hair_colour(G) ∧ G (bill) ∧ G (john): t 

       ∃G (hair_colour(G) ∧ G (bill) ∧ G (john)): t 

Higher-Order Quantification, Examples 
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■  The sets of well-formed expressions WEτ for every type 
τ are given by: 
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ 
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ. 
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in 

WEt.   
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ 

and ∃vφ are in WEt. 
(v)  If α, β are well-formed expressions of the same type,  

then α = β ∈ WEt. 

Type Theory – Higher-Order Equality 



Higher-Order Equality 
■  Type-theoretic equality is an operator with very strong expressive 

power. It can express equivalence between representations of any 
type. Examples: 

■  For p, q ∈ CONt, “p=q” expresses material equivalence:“p ↔ q”.   

■  For F, G ∈ CON⟨e, t⟩, “F=G” expresses co-extensionality: 
“∀x(Fx↔Gx)” 

■  For any formula φ,  φ=(x=x) is a representation of “φ is true”. 
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