Semantic Theory Lecture 3: Type Theory 1

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Limitations of first-order logic (1)

- First-order logic talks about
- Individual objects
- Properties of and relations between individual objects
- Generalization across individual objects (quantification)
- FOL is not expressive enough to capture the full range of meaning information that can be expressed by basic naturallanguage expressions; examples:
- Bill is a poor piano player (predicate modifiers)
- Blond is a hair color (second-order predicates)
- Yesterday, it rained (non-logical sentence operators)

Limitations of first-order logic (2)

- FOL cannot represent higher-order quantification, as in the following NL sentences, which express quantification over firstorder predicates:
- Bill and John have the same hair color
- To model these phenomena, we need higher order extensions of FOL. The maximally general higher order extension of logic is Type Theory.

Types

- Basic types:
- e - the type of individual terms ("entities")
- \mathbf{t} - the type of formulas ("truth-values")
- Complex types:
- If σ, τ are types, then $\langle\boldsymbol{\sigma}, \boldsymbol{\tau}\rangle$ is a type.
- An expression of type $\langle\sigma, \tau\rangle$ is a functor expression that takes a σ type expression as argument and forms a type τ expression together with it.

Examples

－Types of first－order expressions：
－Individual constants（John，Saarbrücken）：e
－One－place predicates（sleep，walk）：$\langle\mathrm{e}, \mathrm{t}\rangle$
－Two－place predicates（read，admire）：$\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
－Three－place predicates（give，introduce）：$\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle$
－Higher－order types：
－Predicate modifiers（expensive，poor）：$\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
－Second－order predicates（hair colour）：$\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
－Sentence operators（yesterday，possibly，unfortunately）：$\langle\mathrm{t}, \mathrm{t}\rangle$
－Degree particles（very，too）：$\langle\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle,\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle$
■ Hint：If σ, τ are basic types，$\langle\sigma, \tau\rangle$ can be abbreviated as $\sigma \tau$ ．Thus，the type of predicate modifiers and second－order predicates can be more conveniently written as 〈et，et〉 and 〈et，t〉 respectively．

Type Theory - Vocabulary

- Non-logical constants: For every type τ a (possibly empty) set of non-logical constants CON $_{\tau}$ (pairwise disjoint)
- Variables: For every type τ an infinite set of variables VAR $_{\tau}$ (pairwise disjoint)
- Logical symbols: $\forall, \exists, \neg, \wedge, \vee, \rightarrow, \multimap,=$

■ Brackets: (,)

Type Theory - Syntax

- The sets of well-formed expressions $\mathbf{W E}_{\tau}$ for every type τ are given by:
(i) $\mathrm{CON}_{\tau} \subseteq \mathrm{WE}_{\tau}$ and $\mathrm{VAR}_{\tau} \subseteq \mathrm{WE}_{\tau}$, for every type τ
(ii) If α is in $W E_{(\sigma, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in W E_{\tau}$.
(iii) If φ, ψ are in $W E_{t}$, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \rightarrow \psi)$ are in WE_{t}.
(iv) If φ is in WE_{t} and v is a variable of arbitrary type, then $\forall \mathrm{v} \varphi$ and $\exists v \varphi$ are in $W E$.
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.

Type Theory - Function Application

- The sets of well-formed expressions $\mathbf{W E}_{\tau}$ for every type τ are given by:
(i) $\mathrm{CON}_{\tau} \subseteq \mathrm{WE}_{\tau}$ and $\mathrm{VAR}_{\tau} \subseteq \mathrm{WE}_{\tau}$, for every type τ
(ii) If α is in $W E_{(\sigma, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in \mathrm{WE}_{\tau}$.
(iii) If φ, ψ are in $W E_{t}$, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \rightarrow \psi)$ are in $W E_{t}$.
(iv) If φ is in WE_{t} and v is a variable of arbitrary type, then $\forall \mathrm{v} \varphi$ and $\exists v \varphi$ are in $W E$.
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.

Function Application

- The most important syntactic operation in type-theory is function application:

$$
\text { If } \alpha \in W E_{<\sigma, \tau>}, \beta \in W E_{\sigma} \text {, then } \alpha(\beta) \in W E_{\tau} \text {. }
$$

- Note: A functor of complex type combines with an appropriate argument to a more complex expression of less complex type.
- The syntactic composition of complex type-theoretic expressions is unsually represented as a "type inference schema":

Bill drives fast

$$
\text { drive: et fast: }\langle\mathrm{et}, \mathrm{et}\rangle
$$

bill: e fast(drive): et
fast(drive)(bill): t

"Inverse" Type Inference

- John believes that Bill likes Mary

$$
\text { like: }\langle e,\langle e, t\rangle\rangle \quad \text { mary: e }
$$

bill: e like (mary): $\langle e, t\rangle$	
believe: ?	like (mary)(bill): t

john: e believe(like (mary)(bill)): ?

believe(like (mary)(bill))(john): t

- believe must be a functor $\langle\boldsymbol{\sigma}, \boldsymbol{\tau}\rangle$, because its sister term is basic; more specifically, the type of "like(mary)(bill)" is t , so believe must be $\langle\mathbf{t}, \boldsymbol{\tau}\rangle$.
- τ is the result type, i.e., the type of "believe(like (mary)(bill))"; the expression takes an e to form a t , so $\mathbf{\tau}$ is $\langle\mathbf{e}, \mathbf{t}\rangle$.
- believe must have type $\langle\mathbf{t},\langle\mathbf{e}, \mathbf{t}\rangle\rangle$

Type Theory - Higher-Order Quantification

- The sets of well-formed expressions $W_{\boldsymbol{\tau}}$ for every type τ are given by:
(i) $\operatorname{CON}_{\tau} \subseteq W E_{\tau}$ and $V A R_{\tau} \subseteq W E_{T}$, for every type τ
(ii) If α is in $W E_{(\sigma, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in W E_{\tau}$.
(iii) If φ, ψ are in $W E_{t}$, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \rightarrow \psi)$ are in WE_{t}.
(iv) If φ is in WE_{t} and v is a variable of arbitrary type, then $\forall v \varphi$ and $\exists v \varphi$ are in WE_{t}.
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.

Higher-Order Quantification, Examples

- Bill has the same hair colour as John.

$$
\exists G(\text { hair_colour }(G) \wedge G(\text { bill }) \wedge G(\text { john }))
$$

- Construction using the type inference schema:
bill:e \quad : $\{e, t\rangle$ john: e $G:\langle e, t\rangle$
hair colour: $\langle\langle e, t\rangle, t\rangle \quad G:\langle e, t\rangle$ hair_colour(G): t G(bill) $\wedge G(j o h n): t$
hair_colour $(G) \wedge G($ bill $) \wedge G(j o h n): t$
$\exists \mathcal{G}($ hair_colour $(G) \wedge G($ bill $) \wedge G(j o h n)): t$

Type Theory - Higher-Order Equality

- The sets of well-formed expressions $W_{\boldsymbol{\tau}}$ for every type τ are given by:
(i) $\mathrm{CON}_{\tau} \subseteq \mathrm{WE}_{\tau}$ and $\mathrm{VAR}_{\tau} \subseteq \mathrm{WE}_{\tau}$, for every type τ
(ii) If α is in $W E_{(\sigma, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in W E_{\tau}$.
(iii) If φ, ψ are in $W E_{t}$, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \rightarrow \psi)$ are in WE_{t}.
(iv) If φ is in WE_{t} and v is a variable of arbitrary type, then $\forall \mathrm{v} \varphi$ and $\exists v \varphi$ are in $W E$.
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.

Higher-Order Equality

- Type-theoretic equality is an operator with very strong expressive power. It can express equivalence between representations of any type. Examples:
- For $p, q \in C O N_{t}, " p=q$ " expresses material equivalence:" $p \rightarrow q$ ".
- For $\mathrm{F}, \mathrm{G} \in \operatorname{CON}_{(\mathrm{e}, \mathrm{t})}, ~ " \mathrm{~F}=\mathrm{G}$ " expresses co-extensionality: " $\forall x(F x-G x)$ "
- For any formula $\varphi, \varphi=(x=x)$ is a representation of " φ is true".

