Semantic Theory Lecture 3: Type Theory 1

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Limitations of first-order logic (1)

- First-order logic talks about
 - Individual objects
 - Properties of and relations between individual objects
 - Generalization across individual objects (quantification)
- FOL is not expressive enough to capture the full range of meaning information that can be expressed by **basic natural**language expressions; examples:
 - Bill is a poor piano player (predicate modifiers)
 - Blond is a <u>hair color</u> (second-order predicates)
 - <u>Yesterday</u>, it rained (non-logical sentence operators)

Limitations of first-order logic (2)

- FOL cannot represent higher-order quantification, as in the following NL sentences, which express quantification over firstorder predicates:
 - Bill and John have the same hair color
- To model these phenomena, we need higher order extensions of FOL. The maximally general higher order extension of logic is Type Theory.

Types

Basic types:

- e the type of individual terms ("entities")
- t the type of formulas ("truth-values")

Complex types:

- If σ , τ are types, then (σ, τ) is a type.
- An expression of type (σ, τ) is a functor expression that takes a σ type expression as argument and forms a type τ expression together with it.

Examples

- Types of first-order expressions:
 - Individual constants (John, Saarbrücken) : e
 - One-place predicates (*sleep, walk*): (e, t)
 - Two-place predicates (read, admire): (e, (e, t))
 - Three-place predicates (give, introduce): (e, (e, t)))
- Higher-order types:
 - Predicate modifiers (*expensive, poor*): ((e, t), (e, t))
 - Second-order predicates (*hair colour*): ((e, t), t)
 - Sentence operators (*yesterday, possibly, unfortunately*): (t, t)
 - Degree particles (very, too): (((e, t), (e, t)), ((e, t), (e, t)))
- Hint: If σ, τ are basic types, (σ, τ) can be abbreviated as στ. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as (et, et) and (et, t) respectively.

Type Theory – Vocabulary

- Non-logical constants: For every type τ a (possibly empty) set of non-logical constants CON_τ (pairwise disjoint)
- Variables: For every type τ an infinite set of variables VAR_τ (pairwise disjoint)
- Logical symbols: \forall , \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow , =
- Brackets: (,)

Type Theory – Syntax

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (ii) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in$ WE_{τ}.
 - (iii) If ϕ , ψ are in WE_t, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are in WE_t.
 - (iv) If ϕ is in WE_t and v is a variable of arbitrary type, then $\forall v \phi$ and $\exists v \phi$ are in WE_t.
 - (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.

Type Theory – Function Application

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (ii) If α is in WE_{(σ, τ)}, β in WE_{σ}, then $\alpha(\beta) \in$ WE_{τ}.
 - (iii) If ϕ , ψ are in WE_t, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are in WE_t.
 - (iv) If ϕ is in WE_t and v is a variable of arbitrary type, then $\forall v \phi$ and $\exists v \phi$ are in WE_t.
 - (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.

Function Application

The most important syntactic operation in type-theory is function application:

If $\alpha \in WE_{<\sigma, \tau>}$, $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$.

- Note: A functor of complex type combines with an appropriate argument to a more complex expression of less complex type.
- The syntactic composition of complex type-theoretic expressions is unsually represented as a "type inference schema":

Bill drives fast		<u>drive:</u>	et	<i>fast:</i> (et, et)
	<u>bill: e</u>		fast(d	<u>rive): et</u>

fast(drive)(bill): t

"Inverse" Type Inference

John believes that Bill likes Mary

<u>like: (e, (e,t)) mary: e</u>

<u>bill: e like (mary): (e,t)</u>

believe: ? like (mary)(bill): t

john: e believe(like (mary)(bill)): ?

believe(like (mary)(bill))(john): t

- believe must be a functor (σ, τ), because its sister term is basic; more specifically, the type of "like(mary)(bill)" is t, so believe must be (t, τ).
- τ is the result type, i.e., the type of "believe(like (mary)(bill))"; the expression takes an e to form a t, so τ is (e,t).
- believe must have type (t, (e,t))

Type Theory – Higher-Order Quantification

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (ii) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in$ WE_{τ}.
 - (iii) If ϕ , ψ are in WE_t, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are in WE_t.
 - (iv) If ϕ is in WE_t and v is a variable of arbitrary type, then $\forall v \phi$ and $\exists v \phi$ are in WE_t.
 - (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.

Higher-Order Quantification, Examples

Bill has the same hair colour as John.

 $\exists G (hair_colour(G) \land G (bill) \land G (john))$

Construction using the type inference schema:

 $\exists G (hair_colour(G) \land G (bill) \land G (john)): t$

Type Theory – Higher-Order Equality

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (ii) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in$ WE_{τ}.
 - (iii) If ϕ , ψ are in WE_t, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are in WE_t.
 - (iv) If ϕ is in WE_t and v is a variable of arbitrary type, then $\forall v \phi$ and $\exists v \phi$ are in WE_t.
 - (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.

Higher-Order Equality

- Type-theoretic equality is an operator with very strong expressive power. It can express equivalence between representations of any type. Examples:
- For p, $q \in CON_t$, "p=q" expresses material equivalence: "p \leftrightarrow q".
- For F, G ∈ CON_(e, t), "F=G" expresses co-extensionality: "∀x(Fx→Gx)"
- For any formula φ , $\varphi = (x = x)$ is a representation of " φ is true".